Iterative Algorithm to the Quadratic Minimization Problem 二次型极小化问题的迭代算法
Under new control conditions, we prove convergence of the quadratic minimization problem, which improves the recent results by Xu about quadratic optimization. 在新的控制条件下,证明了二次型极小化问题的迭代算法的有效性,所得结果改进了徐洪坤关于二次型优化的最新结果。
A sequential quadratic method for solving complementarity problems is presented based on a transformation of turning the complementarity problem into a minimization problem with nonnegative constraints. 通过将互补问题转化为一种带非负约束的极小化问题,给出了求解互补问题的一种序列二次规划方法。
The first method converts the estimation to a quadratic minimization problem, and then solves it by the method of Lagrange multipliers. 第一种算法将衰落系数的估计问题转换为了一个带约束的二次最小化问题,进而利用拉格朗日乘子法对其进行求解。
Conjugate direction method comes from the study of the minimization problem of the quadratic function, but it can be extended to deal with the minimization problem of non-quadratic function. 共轭方向法是从研究二次函数的极小化产生的,但是它可以推广到处理非二次函数的极小化问题。